

F L E E T A D M I R A L ’ S H A N D B O O K
U NI VER SAL SP AC E F LE ET COM MU N ICA T ION P R O T OCO L 1 .0

PREFACE

Greetings,

Congratulations on your new appointment as fleet admiral. We entrust in you supreme
control over your fleet so you can deliver nothing short of total victory.

This document hopes to tell you all you need to know about space warfare. It will describe to
you the standard operating procedures and the protocol used to communicate with your
spaceships in order to get you to the action as soon as possible.

Good luck.

Best wishes,

Fazli Sapuan

Grand Admiral of the Fleet

TABLE OF CONTENTS

Preface ... 2

General Overview ... 1

The Universe ... 3

Ship Production ... 4

Space Combat ... 5

Round Transaction Order ... 6

Victory Conditions .. 7

Tournament Set-up .. 8

Universal Space Fleet Communication Protocol .. 9

Universe Object .. 9

Planet Object .. 10

Fleet Object ... 10

Page 1

GENERAL OVERVIEW

The game is a turn-based artificial intelligence game.

Each player must write a JavaScript program that will instruct the fleet of unmanned
spacecraft to perform certain actions in a particular round.

At the start of a round, each player’s program is executed with the state of the game called
the state of the universe. Based on the information given in the state, each program will
commit a set of instructions to be performed. There is no limit to the number of
instructions that can be committed so long as the instructions are valid and are physically
possible. The program, however, must return within a fixed time constraint of 1 seconds or
the program’s turn will be skipped for that round regardless of any committed
instructions.

At the end of each round, the state of the program is preserved but the state of the universe
will be overwritten by a new one.

The following diagram illustrates the expected control flow of your program:

Page 2

You may structure your program in any way you like. This is the suggested design pattern
for your program:

if (typeof init === "undefined") {
 // state initialisation goes here
 // ...
 // commit initial state instructions here

 var init = true;
}

// perform calculations here
// ...
// commit instructions here

Your program must be free from error. If your program triggers an error during its runtime,
the execution of the rest of the program is not guaranteed.

Page 3

THE UNIVERSE

The universe is the collection of all planets that exists in the game. In order to simplify space
warfare, we make a couple of assumptions:

1. All planets lie on a flat 2D plane
2. All planets are stationary

There are at most 100 planets in the universe and planets have different sizes which
determine the physical capacity of a planet. Universes are always rotationally symmetrical
and always contain an odd number of planets.

In order to aid navigation, the positions of the planets are described by the x-coordinate and
y-coordinate of the planet relative to a fixed origin called the centre of the universe.

These coordinates are in a unit called the astronomical unit, u. All planets are at most 100u
away from the centre of the universe effectively making the universe disc-shaped.

You start your war on a special planet called the home planet. Home planets are the largest
planets available in the universe and are visually marked with a capitol star.

Example universe:

1000/2000 1000/2000

0/1500

0/1500 0/1000

0/1000

Ships/Capacity

0/500

Page 4

SHIP PRODUCTION

All captured planets automatically produce ships at the end of a round.

Players have the option to trade a flat fee of a fixed number of ships to upgrade a planet.
Upgraded planets will produce spaceships at a higher rate than usual. The number of home
planets held by the player will also affect the rate of production of all planets under the
player’s control.

The rate of production is defined as:

𝑑𝑦
𝑑𝑟

= �10 × 𝐿 ×
9 + ℎ

10 � ,𝑤ℎ𝑒𝑟𝑒:

𝑦 = 𝑠𝑝𝑎𝑐𝑒𝑠ℎ𝑖𝑝𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒𝑡
𝑟 = 𝑟𝑜𝑢𝑛𝑑𝑠 𝑒𝑙𝑎𝑝𝑠𝑒𝑑
𝐿 = 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒𝑡
ℎ = ℎ𝑜𝑚𝑒 𝑝𝑙𝑎𝑛𝑒𝑡𝑠 ℎ𝑒𝑙𝑑

The cost of upgrading a planet is as follows:

Level Cost
2 0.3 x Capacity of planet
3 0.6 x Capacity of planet

Any excess ships above the capacity of the planet are destroyed due to overpopulation.

Page 5

SPACE COMBAT

At the start of the match, each player is given a fleet of 1000 spaceships at their respective
home planets.

Spaceships can be instructed to travel from one planet to another.

When assigned a destination, spaceships automatically travel towards the destination
planet at a constant speed of 10u/round. Due to technical limitations in spacefaring
technology, spaceships can only travel in straight lines and cannot receive instructions while
in open space.

Space combat doctrine requires spaceships to travel in a group no smaller than 20. The
ships on-board computers will refuse to launch if this condition is not met.

Spaceships automatically capture planets as long as they exist on the planet at the end of
the round. If a planet with an upgrade is captured, the planet is downgraded by 1 level.

Spaceships automatically engage enemy spaceships when on planets with a 1:1 mortality
ratio.

Page 6

ROUND TRANSACTION ORDER

As with all transaction-based systems, the order of which instructions are carried out in a
transaction matters. For example, banks can carry out withdrawal instructions first before
carrying out deposit instructions in order to charge overdraft fees.

Extrapolating that idea, when any ambiguities of order of the player’s instructions and the
steps in game state occur, the correct order is designed in such a way that the order that
produces the worst possible outcome.

The order of a round’s transaction is as follows:

1. All player commands
2. Automatic ship movements / planet captures with the following criteria in descending

order of importance:
a. The closer ships goes first
b. The largest force goes first
c. The ships that travelled the furthest goes first
d. Coin flip (highly unlikely)

3. Automatic production of ships

Page 7

VICTORY CONDITIONS

The game ends when all these necessary conditions are satisfied:

1. Only 1 player has the ability to produce ships in the next turn
2. Not more than 1 player have spaceships in the universe

In such an event, the sole survivor is deemed the winner of the match.

However, if these conditions cannot be met after 500 rounds, a time-out occurs. In the event
of a time-out, the winner will be decided by the following tie-breakers in descending order:

1. Number of planets controlled by player
2. Size of space fleet
3. Rate of production of spaceships
4. Coin flip (highly unlikely)

Example Red victory:

Notice how red does not need to capture every planet in the universe.

Page 8

TOURNAMENT SET-UP

In the tournament, participating programs are pit against each other 1-on-1 in a random
match up.

Each participant starts with an Elo rating, R of 1000. After every match, a new Elo rating, R’
is calculated using the following formula:

𝑅′ = 𝑅 + 𝐾(𝑆 − 𝐸)

𝐸 = �
1

1 + 10
𝑅𝑖−𝑅
400

𝑁

𝑖=0

𝑤ℎ𝑒𝑟𝑒,
𝐾 = 10
𝑆 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑠
𝑅𝑖 = 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡′𝑠 𝑟𝑎𝑡𝑖𝑛𝑔
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑠

Defeating an opponent with a higher rating will give a proportionally larger rating increase.
Similarly, being defeated by an opponent with a lower rating will give a proportionally larger
rating decrease. Notice how the combined ratings of both players do not change throughout
the tournament.

The Elo rating is finalized approximately when enough matches are carried out. The winner
of the tournament is the player with the highest Elo rating.

Page 9

UNIVERSAL SPACE FLEET COMMUNICATION PROTOCOL

This is the API you need to use to communicate with the space fleet and radar systems.

You may also use the underscore.js supporting library in your program. Underscore.js
provides functional programming functionality for your program, enabling you to write
concise and elegant code using techniques like higher order functions. To see a complete
list of supported functions, visit http://underscorejs.org/.

If your program encounters an error or times out, a message will be logged in the JavaScript
console of your browser. You may also log messages to the console by using console.log().
These messages will be visible to anyone watching the match.

IMPORTANT: Only use these methods. Naked access is not illegal but unreliable and
strongly discouraged.

Due to the freeze and thaw methods used by the server, the following keywords are strictly
reserved. DO NOT USE THESE KEYWORDS IN YOUR PROGRAM:

• __IS_UNIVERSE__
• __IS_ROOT__
• “_UNIVERSE_” (n.b. this is a String)

The presence of these keywords can possibly (but not always) cause the interpretation of
your program to fail, making you lose your turn. This is mainly because of corruption of your
program’s state, resulting in loss of data.

REMINDER: If you capture results from methods that return Arrays into your program’s
state, the array may contain references to objects that do not exist and are no longer valid. It
is the responsibility of your program to detect these invalid occurrences.

UNIVERSE OBJECT

universe.getPlayerId()

Returns the integer player_id of the player.

universe.getNumOfPlayers()

Returns the number of players in the match.

universe.getPlanets()

Returns the array of planet objects representing all planets in the universe.

universe.getFleets()

Returns the array of fleet objects representing all groups of ships in the universe.

universe.actions.send(<ships>, <from>, <to>)

http://underscorejs.org/

Page 10

Commits a send action of integer ships ships, from planet object from to planet object to.
The function returns boolean true if successful and false on error (e.g. not physically
possible/not owner of planet).

universe.actions.upgrade(<planet>)

Commits an upgrade at planet object planet. The function returns boolean true if successful
and false on error (e.g. insufficient ships/not owner of planet).

universe.actions.clear()

Clear all actions that had been commited up to this point.

PLANET OBJECT

planet.getX()

Returns the x-coordinate (in astronomical units) of the planet.

planet.getY()

Returns the y-coordinate (in astronomical units) of the planet.

planet.getSize()

Returns the capacity of the planet.

planet.getOwner()

Returns an integer player_id.

planet.getShips()

Returns the number of ships on the planet.

planet.getLevel()

Returns the level of the planet.

planet.isHome()

Returns boolean true if it is a home planet and false if it is a ordinary planet.

planet.send(<number>, <to>)

Commits a send action of integer ships ships, from the planet to planet object to. The
function returns boolean true if successful and false on error (e.g. not physically possible/not
owner of planet).

planet.upgrade()

Commits a upgrade command on the planet if it is valid. The function returns boolean true if
successful and false on error (e.g. insufficient ships/not owner of planet).

FLEET OBJECT

Page 11

IMPORTANT: Fleet objects are the only objects that can be destroyed in the course of the
universe. If you retain a fleet object reference, it is your responsibility to check if the
reference is still valid by checking it has an owner (i.e. getOwner() is not 0) or if it has any
ships (i.e. getShips() is not 0)

fleet.getOwner()

Returns an integer player_id.

fleet.getShips()

Returns the number of ships in the group.

fleet.getFrom()

Returns the planet object the fleet was sent from

fleet.getTo()

Returns the planet object the fleet is going towards

fleet.getDistance()

Returns the distance (in astronomical units) required to travel to reach the destination planet.

	Preface
	General Overview
	The Universe
	Ship Production
	Space Combat
	Round Transaction Order
	Victory Conditions
	Tournament Set-up
	Universal Space Fleet Communication Protocol
	Universe Object
	Planet Object
	Fleet Object

